Week 3 Meeting

$\bullet \bullet \bullet$

9/17/18 Team Leader: Katayi Other Team Members: Nur, Chufu, Tam, Ahmed, YJ Advisor: Dr. Ajjarapu

Topics

- Team Member Roles
- Deliverables
- Solar Plant / Substation Location
- Solar Power Plant/Substation Specifications
- Single Line Diagram
- ILR = 1.30
- Inverter: Eaton 1666kW
- Panel: Hanwha 325W
- Fixed Rack System

Team Member Roles

- Katayi (Team Leader)
- Assign tasks to members, rotate on the 11th of every month
- Responsibilities: Meeting minutes, research, communication in team
- Nur (Meeting Scribe)
- Responsibilities: Reserve rooms for weekly meetings, and take notes during meetings and distribute them
- Ahmed (Research Manager)
- Responsibilities: divide the research accordingly
- Tam (Report Manager)
- Responsibilities: Weekly reports and agenda
- YJ (Website Manager)
- Upload weekly reports, project plan, and design document to the website
- Chufu (Website Manager/Layout Designer)
- Design the website and layout of project

Project Deliverables Next Semester:-

This Semester:-

- Substation one-line drawings
- Solar plant array layout/drawings
- Engineering man-hour budget (Gantt Chart)
- Project plan (final)
- Design document
- Team website

- Substation three-line drawings
- Revise/improve last semester's drawings
- Engineering man-hour budget (Gantt Chart)
- Design document (final)
- Team website (final)

Location of Solar Power Plant/Substation

• California would be best location to establish solar power plant.

Annı

- High sun radiation most of the year around.
- \circ Less rain and less cloudy.
- Abundance of land.

Number of Panels Needed = $\frac{60 MW}{325 W}(1.30) = 240000 \text{ panels}$ Panel Area = 21.45 ft² Total Area of Panels = 240000 * (21.45 ft²) = 5147990 ft²

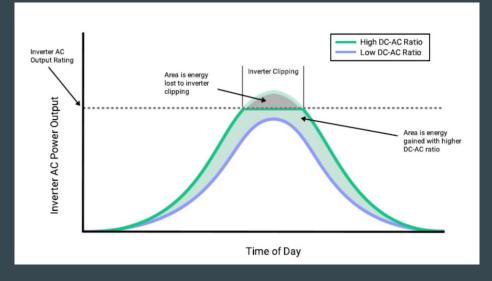
Month	Solar Radiation	AC Energy	Requested Location	LOS ANGELOS			
	(kWh / m ² / day)	(kWh)	Weather Data Source	Lat, Lon: 34.05, -118.26 1.0 mi			
January	4.47	6,482,419	Latitude	34.05° N			
February	5.04	6,494,313	Longitude	118.26° W			
March	6.25	8,685,591	PV System Specifications (Commercial)				
April	6.89	9,268,753	DC System Size	60000 kW			
May	7.15		Module Type	Standard			
	7.15	9,879,668	Array Type Fixed (open rack)				
June	6.99	9,157,235	Array Tilt	20°			
July	7.51	10,158,427	Array Azimuth	180°			
August	7.55	10,119,092	System Losses	14.08%			
September	6.81	8,843,875	Inverter Efficiency	96%			
October	5.77	7,857,386	DC to AC Size Ratio	1.2			
November	5.03	6,810,807	Economics				
December	4.07	5,917,852	Average Retail Electricity Rate	0.127 \$/kWh			
			Performance Metrics				
nnual	6.13	99,675,418	Capacity Factor	19.0%			

Solar Power Plant / Substation Specifications

Solar Power Plant

- Output: 60MW
- DC Voltage: 1500V
- Panel: Hanwha 325W
- Inverter: Eaton 1666kW
- Inverter Load Ratio (ILR): 1.30
- Fixed Rack System

Substation


- Transmission Level Voltage: 115 kV
- Distribution Level Voltage: 34.5 kV

Single Line Diagram

- Transformers: change voltage from one level to another
- Lightning arrestors: protect substation equipment and electric system from lightning strokes
- Circuit switcher: provides equipment protection of transformers, lines, cables, and capacitor banks
 - also used to energize/de-energize capacitor banks
- Disconnect switches: isolate lines and equipment for maintenance
- Circuit breakers: protection devices to detect fault (via current transformer) and interrupt current flow
 allows the rest of the system to continue operating with minimal impact
- Ring bus, double bus, or breaker and a half: failure of a circuit breaker does not cause an outage
 - parts of the substation can be de-energized for maintenance and repairs

Inverter Load Ratio (ILR) = 1.30

- ILR is the DC/AC ratio or ratio of the solar arrays to the inverter.
- Even though most people think a rate of 1.1 is ideal, we will use 1.3 because:
 - Our system will rarely experience "full standard" conditions
 - Generally, when an inverter is in over-power mode, it sacrifices excess power as losses

Inverter: Eaton 1666kW

- Inverters convert DC power produced by the solar panel into AC power that can be sent to the grid
- We will be using the Eaton 1666kW inverter, largest utility scale class
- Boosts plant reliability, reduces maintenance cost

Panel: Hanwha 325W

- Designed specially for large power plant to reduce the BOS cost
- Up to 17.4% efficiency rate under any condition, minimum of 16.3%
- Normal max power 325 W
- Max system voltage 1500(IEC)/1500V (UL).

ELECTRICAL CHARACTERISTICS											
POV	POWER CLASS			320	325	330	335	340			
MINIMUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC1 (POWER TOLERANCE +5W / -0W)											
Minimum	Power at MPP ²	PMPP	[W]	320	325	330	335	340			
	Short Circuit Current*	Isc	[A]	9.39	9.44	9.49	9.54	9.59			
	Open Circuit Voltage*	V _{oc}	[V]	46.17	46.43	46.68	46.94	47.20			
	Current at MPP*	IMPP	[A]	8.79	8.85	8.91	8.97	9.03			
	Voltage at MPP*	V _{MPP}	[V]	36.39	36.70	37.02	37.33	37.63			
	Efficiency ²	η	[%]	≥16.0	≥16.3	≥16.5	≥16.8	≥17.1			
MINIMUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NOC3											
Minimum	Power at MPP ²	PMPP	[W]	237.2	241.0	244.7	248.4	252.1			
	Short Circuit Current*	Isc	[A]	7.57	7.61	7.65	7.69	7.73			
	Open Circuit Voltage*	V _{oc}	[V]	43.08	43.32	43.56	43.81	44.05			
	Current at MPP*	IMPP	[A]	6.89	6.94	6.99	7.04	7.09			
	Voltage at MPP*	V _{MPP}	[V]	34.44	34.72	35.01	35.29	35.56			
1100	0 W/m ² , 25°C, spectrum AM 1.5G ² Measurement tolera	³ 800 W/m ² , NOCT, spectrum AM 1.5G		* typical values, actual values may differ							
1100	0 W/m ² , 25°C, spectrum AM 1.5G ² Measurement tolera	ances STC ± 39	%; NOC ±5%	3 800 W/m ² , NOCT, spe	ectrum AM 1.5G	* typical values, actual va	alues may differ				

Fixed Rack System

- We will use this system because:
 - Easier to maintain
 - Cost effective

Questions That We Have

- How do we use the array parameter tool?
- Should we use 1666kW or 1670kW for our calculations?
- What are the differences between the given and standard drawings?
- What is the reason of using G4.1 solar panel instead of G4.2 model (considering G4.2 is the newer version)?